Mardigian Library
Ask a QuestionMy Library Account
Search Library Catalog - Books, DVDs & More
Limit to available
More Searches
   
Limit results to available items
Find more results:
Search MelCat
More Information
  
Lawler, Gregory F., 1955-
Random walk and the heat equation / Gregory F. Lawler
Providence, R.I. : American Mathematical Society, c2010
book jacket
Location Call Number Status
 4th Floor  QA274.73 .L385 2010    AVAILABLE
Subject(s) Random walks (Mathematics)
Heat equation
Physical Description ix, 156 p. : ill. ; 22 cm
Note Includes bibliographical references (p. 155-156)
Contents Chapter 1. Random Walk and Discrete Heat Equation -- 1.1. Simple random walk -- 1.2. Boundary value problems -- 1.3. Heat equation -- 1.4. Expected time to escape -- 1.5. Space of harmonic functions -- 1.6. Exercises -- Chapter 2. Brownian Motion and the Heat Equation -- 2.1. Brownian motion -- 2.2. Harmonic functions -- 2.3. Dirichlet problem -- 2.4. Heat equation -- 2.5. Bounded domain -- 2.6. More on harmonic functions -- 2.7. Constructing Brownian motion -- 2.8. Exercises -- Chapter 3. Martingales -- 3.1. Examples -- 3.2. Conditional expectation -- 3.3. Definition of martingale -- 3.4. Optional sampling theorem -- 3.5. Martingale convergence theorem -- 3.6. Uniform integrability -- 3.7. Exercises -- Chapter 4. Fractal Dimension -- 4.1. Box dimension -- 4.2. Cantor measure -- 4.3. Hausdorff measure and dimension -- 4.4. Exercises
Review "The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective." "The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set." "The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas."--BOOK JACKET
Series Student mathematical library ; v. 55

Mardigian Library, 4901 Evergreen Rd.
Dearborn, MI 48128-1491 313-593-5400 fax 313-593-5561
ask-a-question@umd.umich.edu
The Regents of the University of Michigan | Non-Discrimination Policy
Copyright © The University of Michigan - Dearborn • 4901 Evergreen Road • Dearborn, Michigan 48128 • 313-593-5000
The University of Michigan - Ann Arbor | The University of Michigan - Flint | SITEMAP | DIRECTORY | CONTACT