Subject(s) 
Finite fields (Algebra)


Galois theory

Physical Description 
x, 80 p. : ill. ; 24 cm 
Summary 
"V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers" Provided by publisher 
Note 
Includes bibliographical references and index 

Machine generated contents note: Preface; 1. What is a Galois field?; 2. The organisation and tabulation of Galois fields; 3. Chaos and randomness in Galois field tables; 4. Equipartition of geometric progressions along a finite onedimensional torus; 5. Adiabatic study of the distribution of geometric progressions of residues; 6. Projective structures generated by a Galois field; 7. Projective structures: example calculations; 8. Cubic field tables; Index 
